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The purpose of this paper is to study the asymptotic behavior of the zeros of
polynomials of near best approximation to continuous functions f on a compact set
E in the case when f is analytic on the interior of E but not everywhere on the
boundary. For example, suppose E is a finite union of compact intervals of the real
line andfis a continuous function on E, but is not analytic on E; then we show (cf.
Corollary 2.2) that every point of E is a limit point of zeros of the polynomials of
best uniform approximation to f on E. This fact answers a question posed by P.
Borwein who showed that, for the case when E is a single interval and lis real­
valued, then the above hypotheses on f imply that at least one point of E is the limit
point of zeros of such polynomials. © 1986 Academic Press, Inc.

1. INTRODUCTION

Let E be a closed bounded set in the z-plane, whose complement K (with
respect to the extended plane) is connected and regular in the sense that K
has a Green's function G(z) with pole at infinity: G(z) is harmonic inK
except at infinity, and in a neighborhood of the point of infinity we have

G(z) = log Iz 1+ Go(z),
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where Go(z) is harmonic in this neighborhood and approaches a finite
value at infinity; moreover, G(z) is continuous in the closed region K
except at infinity and vanishes on the boundary of K (Walsh [13J). The
function

t = <P(z):= eG(Z)+iH(Z), (1.2)

where H(z) is conjugate to G(z) in K, maps K onto the exterior of the unit
disk. Hence, for z --+ 00,

I<P(z)/z I= lie + O(l/z), (1.3)

with c> 0; if K is simply connected we normalize H(z) such that
<P'( (0) = lie. The constant c is called the capacity or transfinite diameter of
the set E. For each <T~ 1, we consider the equipotential locus

with interior

r" :={zEK:G(z)=log<T},

E" := Eu {z E K: O~G(z) < log <T},

(1.4)

(1.5)

where E denotes the interior of E.
lf a function f(z) is continuous on E and analytic on E, there exists a

largest real number <T (finite or infinite), say <T = p, such that f(z) is single­
valued and analytic on Ep' Then, denoting by IIn the collection of all com­
plex polynomials of degree ~ n, there exist (cf. [13 J) polynomials Pn Elln'
n = 0, 1, 2, ..., such that

(1.6)

where we denote by II' II E the Chebyshev (uniform) norm on the set E.
Moreover, there exist no polynomials Pn E IIn for which the left-hand side
of (1.6) is less than lip. For p> 1, a sequence {Pn} satisfying (1.6) is said
to converge maximally to f(z) on E.

Walsh [15J proved the following result.

THEOREM 1.1. Let E be a closed bounded point set whose complement K
is connected and regular, and suppose f is single-valued and analytic on E p ,

where 1< p < 00 and f cannot be analytically extended as a single-valued
function to r P' Let {pn}, pnEiln' n = 0, 1, 2,..., be a sequence ofpolynomials
converging maximally to f(z) on E, and Zo a point of r p that is a limit of
points of E p on which f(z) is not zero. Then Zo is a limit point of zeros of the
polynomials pno
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It is important to notice that the case when f is continuous on E,
analytic on E but not everywhere on the boundary oE, i.e., p = 1, is not
considered in the theorem above.

Theorem 1.1 is a generalization of a result of R. Jentzsch [6] (cf. [12,
p. 238-241 J):

THEOREM 1.2. Letf(z) = L~o avz v be a power series with radius of con­
vergence equal to 1. Then every point on the boundary of the unit disk is a
limit point of the zeros of the partial sums

n

Sn(Z):= I avzV
, n = 1, 2, ....

v~o

Theorem 1.2 was generalized by Ostrowski [8J, who considered a
sequence of analyitc functions fn(z) converging uniformly to f(z) on every
compact subset of a region D; he chose for D the largest possible region,
the so-called complete region of uniform convergence. Under various
assumptions as to the growth of fn(z), the speed of convergence and the
nature off(z), he discussed the zeros offn(z) in the neighborhood of a par­
ticular boundary point of E.

In [11 J Szego considered the distribution of zeros of a polynomial
sequence {Pn}ndJl converging uniformly to a function f(z) i= 0 on every
compact subset of a simply connected region G = E bounded by a finite
number of analytic Jordan arcs and satisfying the following properties:

(AI) nE91:= {n 1 <nz <n3 < ... },
(A2) Pn(z) = anzn+ .,. E lIn \IIn- 1 ,

(A3) limn ~ 00 Ian 1
1
/
n= lie, where c = cap(E).

Rosenbloom [9J discussed the analogous problem for sequences {Pn}
bounded in the neighborhood of some point.

In our theorems, especially in Section 3, the condition that {Pn} con­
verges to a function f(z) i= 0 in compact subsets of a region is replaced by
the assumption

(A4) limn~oo IIPnll}{n=1.

In (A3) and (A4), the limits are considered for n = n1, nz ,....

The outline of the present paper is as follows. In Section 2, a charac­
terization of functions f(z) that fail to be analytic on E, is given in terms of
the leading coefficients of the polynomials of best uniform approximation
to f(z) on E (Theorem 2.1 ). This result is analogous to the
Cauchy-Hadamard formula for the radius of convergence of a power series.
Moreover, we extend Theorem 1.1 to the case p = 1, if {Pn} is a sequence
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of near best polynomial approximations. In Section 3, we state our main
results concerning the distribution of the zeros of polynomials Pn satisfying
the conditions (AI )-(A4). As special cases we obtain the results of Szego
[11]. In Section 4, we discuss the notion of exact harmonic majorant and
its connection with polynomials Pn satisfying (Al)-(A4). Finally, in Sec­
tion 5 the proofs of the results stated in Sections 2 and 3 are given.

2. NEAR BEST POLYNOMIAL ApPROXIMATIONS

THEOREM 2.1. Let E be a closed bounded point set whose complement K
is connected and regular, and suppose the function f is continuous on E,
analytic in E. For each n = 0, 1, 2,..., let p:(z) = anzn+ '" E IIn be the
polynomial of best uniform approximation to f on E. Then f is not analytic on
E if and only if

- 1
lim I an 1

1
/
n = -,

n --+ 00 C
(2.1 )

where c is the capacity of E.

We remark that under the conditions of Theorem 2.1, Mergelyan's
theorem (cf. [13]) implies that

as n --+ 00.

COROLLARY 2.1. Let E be as in Theorem 2.1, f continuous on E, analytic
in the interior of E but not on E. If Pn(z) = bnzn+ "', n = 0, 1,..., is a
sequence of polynomials such that

where

lim lenI 1
/
n< 1,

n~ 00

then

- 1
lim Ibn 11/n = -.

n--+ 00 C

n=O, 1,2,..., (2.2)

(2.3)

(2.4)

As a generalization of Theorem 1.1 for the case p = 1, we state

THEOREM 2.2. Let E be a closed bounded point set whose complement K
is connected and regular, and suppose the function f is continuous on E,
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analytic in the interiorof E but not on E. For n = 0, 1,..., let P: E H n be the
polynomial of best uniform approximation to f on E. If Zo is a point of the
closure of the set aE'\as, where

S:= {xEE: f(z):=O in a neighborhood of x}, (2.5)

then Zo is a limit point of zeros of the P:, n = 0, 1,2,....
More generally, such a point Zo is a limit point of zeros of any sequence of

polynomials {Pn}, Pn E H n, n = 0, 1,..., that satisfy (2.2) and (2.3).

If the compact set E has empty interior, then clearly the set S of (2.5) is
empty and we get from Theorem 2.2 the following.

COROLLARY 2.2. Let E be a closed bounded point set with E = 0 and
connected and regular complement, and suppose f is continuous on E, but not
(everywhere) analytic on E. For n = 0, 1,..., let Pn E JIn be a sequence of
polynomials satisfying (2.2) and (2.3). Then every point of E is a limit point
of zeros of the polynomials Pn'

3. DISTRIBUTION OF ZEROS

Because of Theorem 2.1 (resp., Corollary 2.1), a subsequence of the
polynomials of best uniform approximation P: (resp., the polynomials Pn
of Corollary 2.1) satisfies the conditions (Al)-(A4), when the function f
cannot be analytically extended to aE. Henceforth we assume throughout
this section that {Pn}nE9l is a sequence of polynomials satisfying the
assumptions (AI )-(A4). Moreover, all limits as n -+ 00 are considered for
n=nj,n2' .. ··

In stating the next theorems it is convenient to introduce the following
notation: For any set C in C let Zn(C) be the number of zeros of Pn in C,
counted with their multiplicities.

1· Zn(J °1m --' = .
n --+ 00 n

(3.1 )

Assume, furthermore, that the complement K is simply connected and write

(3.2)
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where qn E IIz is the monic polynomial whose zeros are the zeros ofpn(z) in
K\E". Then, jdr a suitable choice of branches,

. {p (z)}l/(n- Z n,n)
hm n = 1

n--> 00 <P(z)
(3.3)

holds locally uniformly in K\E".

If the boundary oE of E is a closed Jordan curve, then <P(z) is a
univalent conformal mapping from K onto the exterior of the unit disk. As
is well known (cf. [5, Theorem 4, p. 44]), <P(z) can be extended to a
homeomorphism from K onto {t: It I~ 1}. Let z = l/J(t) denote the inverse
mapping of <P(z). If zn,1>'''' zn,n are the zeros of the polynomial Pn and if
zn,k E K, then

(3.4)

with tn,k = Pn,k' eitpn,k, Pn,k ~ 1, q>n,k E [0, 2n).
With the above notation we state

THEOREM 3.2. Assume that oE is a closed Jordan curve. If Zn(.E) = o(n)
for n --+ 00, then the arguments q>n,k associated with the zeros zn,k = l/J(tn,k) of
Pn in K as in (3.4) are uniformly distributed on the interval [0, 2n] in the
sense of Weyl.

Next, we consider the case when K is simply connected and bounded by
Jordan arcs. The equation of a Jordan arc J in C is given for z E J in
parametric form z = y(t), where t runs through a real compact interval
[a, b], a < b, y(t) is continuous, and y(td = y(t2 ) only if t 1 = t2 • A Jordan
arc is called analytic if y(t) is an analytic function on the open interval
(a, b) and y'(t) i=°for all t E (a, b). Hence, there exists a region A, sym­
metric to the interval (a, b), with the property that y( t) is analytic for all
tEA. If, moreover, J E oK and the region A can be chosen in such a way
that y(t) E K when t lies in the upper half of A, and that y(t) lies outside of
K for t in the lower half, then J is a free one-sided boundary arc of K; if, for
an appropriate A, y(t) E K for all t E A\(a, b) then J is afree two-sided boun­
dary arc of K (cf. [1, p. 234]).

A point z E oK is an accessible boundary point of K if there exists a Jor­
dan arc J with endpoint z such that all other points of J lie in K (cf. [5,
p. 35]). If K is simply connected and all points of oK are accessible boun­
dary points of K, then, for the inverse mapping l/J(t) of <P(z), there exists a
continuous extension on {t: It I~ 1} ([5, p. 43]). If J is a free one-sided
boundary arc of K then there exist two arguments IX and [3, IX < [3 < IX + 2n,
such that

(3.5)
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if J is a free two-sided boundary arc of K then there exist four points
a, 13, a, and 11, a < 13~ a< 11~ a + 2n, such that

(3.6)

(cf. [5, Theorem 1, p. 37J). Moreover, in either case, the function ljJ(t) is
analytic and r{J'(t) i= 0 for all interior points t of the inverse image r{J-
(cf. [5, Theorem 5, p.44J).

THEOREM 3.3. Let K be simply connected with only accessible boundary
points, let J be a subarc in the interior of a free one-sided boundary arc of K
such that the connected component B of E, where J c B, is a Jordan region.
Furthermore, assume

as n ---+ 00, (3. 7)

for any compact set C in B. Then there exists a real number eo, 0 < eo < 1,
such that the function r{J(t) can be extended analytically to the closed region
T(eo), where r{J(T(eo)) c Xu B and, for any 0 < 13 < 1, T(e) is the point set

(3.8)

and a, 13 are defined by (3.5). Moreover for the distribution of the zeros of the
polynomials Pn in the closed region J(e) :=r{J(T(e)), O<e~eo, we have

lim Zn(J(e)) =f3- a.
n --> 00 n 2n

(3.9)

THEOREM 3.4. Let K be simply connected with only accessible boundary
points, let J be a subarc in the interior of a free two-sided boundary arc of K.
Then, for any 13 > 0, the distribution of the zeros of the polynomials Pn in the
closed region

J(e):= {z=r{J(t): t=pei'fJ, l~p~l +13, a~q;~{Jora~q;~iJ} (3.10)

satisfies

Zn(J(e))
lim ----"-'----'-'----'

n--J> 00 n
(3.11)

where a, {J, a and iJ are defined by (3.6).

We remark that the above theorems apply to simply connected K where
the boundary oK is composed of a finite number of free one-sided or two­
sided boundary arcs. If the sequence {Pn} converges locally uniformly in E
to a function f(z) t= 0, then by Hurwitz's theorem, condition (3.7) is
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FIG. 1. Zeros of p!o(x), the best approximation to f(x) = vIx on E= [0, 1].

automatically satisfied. Thus Theorem 3.3 contains as special cases certain
theorems of Szeg6 [11].

COROLLARY 3.1. With the same hypothesis as in Theorem 3.3 let D be a
neighborhood of the interior of J such that 15 n 8E = J. Then

lim Zn(D) = f3 - IX.

n~ 00 n 2n
(3.12)

COROLLARY 3.2. Let K and J be as in Theorem 3.4, D a neighborhood of
the interior of J such that 15 n 8E = J. Then

lim Zn(D)=f3- IX +fJ- fi .
n~ 00 n 2n

(3.13 )

To illustrate the results of Corollary 2.2 and Theorem 3.4, we include
Fig. 1 and 2 which show the zeros of the best approximating polynomials
pfo(x) andpto(x), respectively, tof(x)=~ on [0,1]. The figures indicate
the convergence of the zeros to the set E = [0, 1] as well as their uniform
distribution as described above. We wish to thank Professor R. S. Varga
for these valuable computations.

We remark that the results of this section also apply to the polynomials
P:-P~-l' n = 1, 2'00" for an appropriate subsequence, where P: E lIn is, as
in Section 2, the polynomial of best uniform approximation to f on E. In
the case when E= [a, b] andfis real-valued, all zeros of P:-P~-l lie in
[a, b] and must interlace the extreme points of f-p:. Thus we get from
Theorem 3.4 a Kadec-type theorem concerning the distribution of extreme
points. But we must emphasize that the results of Kadec [7] and Fuchs
[4] are sharper since they give estimations for the distance between the
extreme points of f - P: and the extreme points of the Chebyshev
polynomials Tn + l(X) in the case E= [ -1,1].

~... . . . . .
o •.. . . . . .

. . .....,. ...

FIG. 2. Zeros of pMx), the best approximation to f(x) = vIx on E= [0, 1].
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4. EXACT HARMONIC MAJORANTS
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An essential tool for proving the theorems of Sections 2 and 3 is the con­
cept of exact harmonic majorants introduced by Walsh [14].

DEFINITION [14]. Let {Fn } be a sequence of locally single-valued
analytic functions (except possibly for branch points) in a region D of the
z-plane, whose modulus IFn(z) I is single-valued in D. If the function V(z) is
harmonic in D and if we have for every continuum S (S not a single point)
in D the relation

lim II Fn lis ;£max eV(z),
n~ 00 ZES

(4.1 )

then V(z) is a harmonic majorant for the sequence {Fn} in D. If in (4.1) the
equality holds for every S, then V(z) is an exact harmonic majorant.

THEOREM 4.1 (Walsh [14J). If V(z) is a harmonic majorant for the
sequence {Fn} in D, and if for a single continuum S equality holds in (4.1),
then V(z) is an exact harmonic majorant of the sequence {Fn} in D.

There is an intimate relation between an exact harmonic majorant for
the sequence {Fn} and the zeros of the functions Fn(z), namely,

THEOREM 4.2 (Walsh [14J). Let V(z) be an exact harmonic majorant in
D for the sequence {f~/n} and every subsequence of {f~/n}, where the
functions fn(z) are analytic in D. If y is a closed disk that lies in D and if
Zn(y) is the number of zeros offn in y, then

lim Zn(Y) =0.
n~ 00 n

(4.2)

For the proof of our main results it IS also convenient to have for
reference the following lemmas.

LEMMA 4.1. Let E be a closed bounded set whose complement K in the
extended z-plane is connected and regular. IfPn(z) = anzn+ ... E JIn, then

(4.3 )

where c is the capacity of E.
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Proof Inequality (4.3) is a consequence of the generalized Bernstein
inequality due to Walsh [13, p. 78]; namely,

for all zEK, (4.4 )

where <P(z) is the mapping of (1.2). Letting Z ~ 00 then yields (4.3). I

LEMMA 4.2. If the polynomial sequence {Pn} satisfies (A1)-(A4), then
the Green's function G(z) is an exact harmonic majorant in C\E for every
subsequence of the sequence {p ~/n}n E 91'

Proof Using (A4) and (4.4), it follows that G(z) is a harmonic
majorant in C\E for the sequence {p~/n}nE91' Let us assume that G(z) is
not an exact harmonic majorant in C\E. Then, from Theorem 4.1, we must
have

lim II Pn II}L; < IT,
n~ 00

(4.5)

for every IT> 1. Fix any such value of IT. On applying Lemma 4.1 (with E
replaced by Ea ), we get

(4.6)

since ITC is the capacity of Ea. But then, from (4.5), it follows that

- 1
lim Ianl 1

/
n<-,

n-+co C

which contradicts property (A3). Thus G(z) is an exact harmonic majorant
for {p~/n}nE91' Clearly, the above argument applies also to any sub­
sequence of {p~/n}nE91' I

5. PROOFS

Proof of Theorem 2.1. First we note, by Lemma 4.1 and the fact that
{ II P: II E} is a bounded sequence, that

(5.1 )

Now suppose that (2.1) holds. We wish to show that f cannot be
analytically extended to oE. Assume, to the contrary, that f is analytic on
E. Then f is analytic in Ea , for some IT> 1. But then, since P:: is a
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maximally convergent (cf. [13J) sequence, p:; ~ funiformly on B". Hence
from Lemma 4.1, we get (with E replaced by B,,)

- 1 1
lim Ian Ilin ~ - < -,

n _ 00 (JC C
(5.2)

which contradicts (2.1).
Next, assume thatfis not (everywhere) analytic on aE. If Eq. (2.1) does

not hold, then from (5.1) we have

lim Ian Ilin < ~.
n ........ 00 C

(5.3 )

Let Tn(z) = Zn + ... E fin, n = 0, 1,..., be the Chebyshev polynomials for E,
Le.,

and define

Clearly, Pn-l Efin_ 1 for each n~1. Moreover, since

lim II Tn II i/n = C
n_oo

(cf. [5]), it follows from (5.3) that

lim [I P:: - Pn- 1 II i/n < 1.
n_oo

Also, from the extremal property of P::_1, we have

En - 1(f) = II f - P::-1 II E~ II f - fin -1 II E

~ II f - P:: II E + II p:; - Pn - 1 II E

=En(f) + II p:; - Pn-IIIE,

and hence

But then, from (5.6), we find

lim {En_ 1(f)-En(f)}1In< 1,
n--+ 00

(5.4 )

(5.5)

(5.6)

(5.7)
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and since, by Mergelyan's theorem, En(f) ~ 0 as n ~ 00, we get

lim [En(f)]l/n < 1.
n~ co

(5.8)

(5.9)

As is well known, inequality (5.8) implies thatfis analytic on E (cf. [13])
which is the desired contradiction. I

Proof of Corollary 2.1. Clearly, from Lemma 4.1,

- 1
lim Ibnll/n~_.

n __ oo C

Let us assume that strict inequality holds in (5.9). Since, as in the proof of
Theorem 2.1, we have

En-l(f)~ II f - (Pn - bnTn)llE

~ II f - Pn liE + IlbnTnliE,

it follows from (2.2) that

Thus (2.3) and the assumption of strict inequality in (5.9) yield

lim {En_ 1(f)-En(f)}1/n< 1,
n~ co

which contradicts the fact that f is not analytic on E. I
We remark that the assumption of (2.3) in Corollary 2.1 can be replaced

by the condition
co

L Gn = o(Em-1 (f)),
n=m

as m~ 00. (2.3')

Proof of Theorem 2.2. Because of Theorem 2.1 and Lemma 4.2, there
exists a subset

of the natural numbers such that the Green's function G(z) is an exact har­
monic majorant in C\E for every subsequence of {p:(z)l/n}nE9"l' Let Zo E

aE\aS and assume, to the contrary, that there exists an open disk U cen­
tered at z0 that contains no zeros of P: for n~ no. Since SeE, we can
choose U such that

UnS=0· (5.10)
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For ZE U and each n~no, we define the single-valued analytic function

fn(z) := p;:'(z)l/n = exp (~log P~(Z))

by taking the branch of log p;:'(z) in U for which

-11: < 1m log p;:'(zo) ~ 11:.

(5.11 )

(5.12)

From the fact that {p;:'} is uniformly bounded on E, it follows that the
functions fn are uniformly bounded in U. Hence there exists a subsequence
of {fn}nEIJb say {fn}nEifb 91cm, that converges locally uniformly to an
analytic function g(z) in U. From the boundedness of the sequence
{p;:'(zo)}, we conclude that Ig(zo) I~ 1. Also, since G(z) is an exact har­
monic majorant of {p;:'(z»I/n}nEifI in C\E, it follows that Ig(z) I> 1 in
Un (C\E). Hence g(z) is nonconstant in U and so the open point set

V:={zEU:lg(z)l<l}

is nonempty. Since V n (C\E) = 0, we have VeE and f(z) = 0 for all
Z E V. But then V c 8 and so Un 8 =# 0, which contradicts (5.10). The
theorem is therefore proved for all z E iJE\iJ8, and consequently for all
points z belonging to the closure of iJE\iJs.

From Corollary 2.1, it follows that the above argument also applies to
any sequence {Pn}, n = 0,1, ..., satisfying (2.2). I

Proof of Theorem 3.1. Let (f> 1 and choose (f0 ~ (f such that the level
curve F"o consists of a single Jordan curve. Then there exists a finite cover­
ing of KIJ1" ,

1<:\£" C (1<:\£2"0) U 8 1U 8 2U .. , U 8 m ,

where 8 1 , 8 2 "", 8 m are disks in K. Then (3.1) is proved if

lim Zn(81 ) = ... = lim Zn(8m ) =0
n--+oo n n_oo n

and

lim Zn(1<:\£2"o) = o.
n--+ 00 n

(5.13 )

(5.14)

Lemma 4.2 and Theorem 4.2 show that (5.13) is satisfied. To prove (5.14),
let zn,I' Zn,2'"'' zn,Nn be the zeros of Pn(z) in 1<:\£2"0' Nn := Zn(1<:\£2,,0)' Let
z = !/Jo(t) = ct + ... denote the single-valued analytic mapping of It I> (fo
onto 1<:\£"0' Then we can write

zn,1 = !/Jo(tn,d, Zn,2 = !/JO(tn.2),"" Zn.Nn = !/Jo(tn,NJ,
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with Itn,k I~20"o for k = 1, 2,..., N w The function

get) :=Pn(ljJ~(t» fi (0"6-t:::;.t)
t k=l t-tn,k

is analytic in {t: Itl ~O"o}, even at 00. Using the maximum principle, we get

max Iget) I~ Ig( (0) I
It I ="0

or
Nn

IIPnllr.o~lanl cnO"O-Nn n \tn,kl·
k=l

Since II Pn II r.o~ 0"0 II Pn II E and Itn.k I~20"o, we obtain

log \\PnI\E~log Ian! +n'logc+Nn 'log2

or

log II Pn II E -log Ian I - n . log c
N n ;£ log 2 .

From (A4), we know that

lim log II Pn II E = 0,
n- 00 n

and together with condition (A3) we obtain from (5.15) that

lim Nn = lim Zn(K\,}£2,,0) = o.
n-+oo n n-+oo n

Consequently (3.1) is true.
Next, letpn and qn as in (3.2). For zEK\E", set

. {Pn(z)} l/(n - Zn,.)
hn(z).= cf>(z) ,

where the branch is chosen such that hn( (0) > O. For Z E E, we have

, - ( )1< IPn(z)1
Pn Z = (ddZn,a'

where d1 is the minimal distance from F" to the set E. Since

Pn(z)

(5.15)

(5.16)
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is analytic in K, we get from the maximum principle for Z E K:
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Therefore we get from (3.1) and (A4) that the functions hn(z) are uniformly
bounded in K\E" and satisfy

lim Ihn(z) I:;::; lim II Pn II ¥(n - Zn,.) = 1.
n--+oo n--+co

(5.17)

Moreover, because of the normalization in (5.16) and the condition (A3), it
follows that

lim hn ( 00 ) = 1.
n~ 00

(5.18 )

Since each function hn(z) is analytic in (K\E,,), we conclude from (5.17),
(5.18), and the maximum principle that the functions hn(z) converge
uniformly to the constant function 1 in any compact subset of K\Ea • I

Proof of Theorem 3.2. We know from the preceding proof that the
functions log hn(z) converge uniformly to zero in any compact set C of
K\Ea , if we take for the logarithm the branch with log hn ( (0) = O. Con­
sequently, on differentiating log hn(z), we get

1
, 1 p~(z) </>'(z)
1m --

n~oon-Zn,aPn(z) </>(z)

locally uniformly in K\Ea . Then, from the definition of p,,(z) in (3.2), we
can write

1 1 </>'(z)
lim I --=
n~oon-Zna E- Z-Znk </>(z)

, Zn,k E u '

(5.19)

locally uniformly in K\E". Now, let fez) be a polynomial. Then we get
from (5.19) and the fact that Zn,a = o(n) for n - 00:

. 1 1 f </>'(z)
hm - I f(zn,k) = 2" fez) </>( ) dz

n ~ 00 n Zn,k E E(J nz F u* Z

1 f2"= 2rc 0 f(ljJ((J*ei'P)) d<p,

(5.20)

where (J* > (J. Since the integral on the right-hand side of (5.20) is the same

640/46/4.2
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if we integrate over F, instead of F"o for 1< 1: ~ a*, if follows from the
uniform continuity off 0 JjJ on {t: 1~ It I~ a*} that

1 1 r2" .
lim - L: f(Zn,k) = 2: J. f(JjJ(e1'l')) dcp

n -+ 00 n Zn,k E E(J n 0

(5.21 )

for every polynomial f Since Zn(E) = o(n) for n~ 00, we may restrict the
sum in (5.21) to be over all zeros zn,k = Pn,kei'l'n,k with zn,k EKnE". Using
now for the left-hand side of (5.21) the uniform continuity of f 0 JjJ on the
set {t: 1~ It I~ a} again, we obtain, together with (3.1),

1 . 1 f.2" .lim - L: f(JjJ(e1'l'n,k))=- f(JjJ(e1'l'))dcp,
n-> 00 n K 2n 0

Zn,k E

(5.22 )

for any polynomialj, where CPn,k =arg (Zn,k) as in (3.4). But clearly, then
(5.22) holds for any function f analytic in E and continuous in E.

The arguments CPn,k are uniformly distributed in the sense of Weyl on
[0, 2n] iff

1 1 f2"lim - L: g(CPn,d = 2: g(cp) dcp
n -> 00 n Zn,k E K n 0

(5.23)

holds for any continuous real-valued function g( cp) with period 2n. Let us
therefore consider a function ~ = A(Z) mapping E conformally onto the
interior of the unit disk. Then there exists a continuous extension of A(Z) on
E, such that the inverse map Z = Jl(~) is continuous on {~: I~ I~ I} (cf. [5,
p. 44]). For a given continuous real-valued g( cp) with period 2n the
function

is continuous on {~: I~ I = I}. Hence, for any G >°there exists an algebraic
polynomial q(~) such that

Using (5.22) for f(z) = q(A(Z)), we get for the real part in (5.22):

I
1 1 f2" Ilim - L: g(CPn.k)-2: g(cp)dcp ~2G.

n -+ 00 n Zn,k E K n 0

Since this is true for any G> 0, (5.23) is proved. I
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Proof of Theorem 3.3. Using the first part of the proof of the preceding
theorem, we know that Eq. (5.21) holds for f a polynomial, (J> 1. Now, we
use the partitioning

I = L + L
Zn,k E E(f Zn,k E E Zn,k E £17 \E

Since f 0 ljJ is uniformly continuous on {t: 1 I ~ It I~ (J} and (3.1) holds, we
conclude, as in the proof of Theorem 3.2, that

lim ~ L f(Zn,k) = lim ~ I f(ljJ(ei'Pn,k)),
n ---+ co n Zn,k E Ea \1: n -)0 00 n Zn,k E K

where, as in (3.4), zn,k =ljJ(Pn,kei'Pn,k) for Zn,k EK. Hence we have

(5.24 )

for every polynomial f But then (5.24) is true for all functions f analytic in
E and continuous on E.

Let J be contained in the interior of the free one-sided boundary arc 1 1

of K. It foHows by the reflection principle that ljJ(t) can be extended
analytically to T(eo) for some eo >0 such that ljJ(T(eo»cKvB.

Considering the Jordan region B of E, where J c l1, we define a fixed
conformal one-to-one mapping ~ = 1(z) from B onto the interior of the unit
disk such that the continuous extension onto l1 satisfies

and

where ZI =ljJ(ei~) and Z2 =ljJ(eifJ ). Let z=ji(O denote the continuous
inverse function of ~ = 1(z) mapping {~: I~ I~ I} onto l1, and let

where ex* < ex < {3 < {3*. We fix a real number 15 > 0 such that

0< 15 < min ( ex - ex*, {3* - {3, {3; 0:)'

(5.25)

(5.26 )

and construct the continuous, real-valued, 2n-periodic function go,l (<.0),
whose graph is made up of straight-line segments connecting the points

({3+b-2n,0), (0:-15,0), (IX, 1), ({3, 1), ({3+b,O).
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for ~ E X(int(Jd),

Analogously the graph of the 2n-periodic function g",z(cp) is made up of
straight-line segments connecting the points

({3 - 2n, 0), (IX, 0), (IX + £5, 1), ({3 - £5, 1), ({3, 0).

Since (jj can be extended analytically onto the interior int(Jd of J j [5J, the
functions h", v(~) defined for I~ I= 1 by

h",v(O:= g",v COg (jjiji(~))),

:=0, elsewhere,

are continuous (v = 1, 2). Now, there exist algebraic polynomials q",j(~)

and q",z(~) such that

(5.27)

Let S be some connected component of .£\13: Since K is connected, the
intersection Sn 13 contains exactly one point. Therefore, for v = 1, 2, the
continuous extension Q",v(z) to E of the function q",.(X(z)), where Q",.(z) is
constant on each connected component of .£\13, is well-defined. Moreover,
Q",.(z) is analytic in Eand we may apply (5.24) to fez) = Q",.(z). Consider­
ing the real part of (5.24), we get with (5.27) for the right-hand side

where lim,,~o Rv(l5) = 0 for v= 1, 2. Because of (5.27) there exists a positive
number 6 j ~60 such that

(5.29)

and a positive number 6z ~ 60 such that

(5.30)

where

Since Re(Q",v(z)) is harmonic in B, it follows by (5.27) and the definition of
Q".v(z) that for all zEE,

and (5.31 )
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Moreover, by definition we have
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Re(Q,dz));:£<5,

Assumption (3.7) yields

Hence, by (5.29) and (5.31), we obtain

for all Z E E\,B.

as n -> 00.

(5.32)

(5.33 )

~Re[ L Qb,l(Zn,k)+ L_Qb,l(t/!(ei'Pn,kn]
~~e£ ~~EK

~ Zn(J(Gl)) (1 _ 2(5) _ <5 ~ Zn(J(Gd) - 3<5
n n

or, using (5.24) and (5.28):

lim Zn(J(Gd) ;:£f3
2
- a +R

1
(<5) + 3<5.

n~oo n n

Concerning the function Qb2(Z), we obtain by (5.30)-(5.33) that

~ Re [ L Qb,2(Zn,d + L _ Qb,2(t/!(ei'Pnk))]
Zn,k E E Zn,k E K

;:£ Zn(J(Gl)) (l + 6) + 2<5 + o(n),
n

(5.34)

and, again by (5.24), (5.28):

lim Zn(J(Gd) ~f3-a +R
2
(b)-36+0(n). (5.35)

n ~ 00 n 2n

Since <5 can be arbitrarily small, (3.9) follows from (5.34), (5.35), and
(3.7). I

Proof of Theorem 3.4. Let J be a subarc in the interior of the free two­
sided boundary arc J 1 ,

J 1 = {t/!(t): t = ei'P, a*;:£<p;:£ f3*},

where a* < a < 13 < 13*. For

~ . ( * 13* f3 13 - a)u<mln a-a, - '-2- ,
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we consider the real-valued functions g15,1 (qJ), whose graph is made up by
straight-line segments connecting the points

(13 + b -2n, 0), (ct -b, 0), (ct, 1), (13, 1), (13 + b, 0)

and the function g i5,2( qJ) whose graph is made up by straight-line segments
between the points

(13 - 2n, 0), (ct, 0), (ct + b, 1), (13 - b, 1), (13, 0).

We define for Z E E and v = 1, 2 the functions

:=0,

for Z = tjJ(t) with t = ei'fJ and qJ E [ct*, 13*],

for zEE\J1.

fi5,l(z) andfi5,2(z) are analytic on E, continuous on E, and we may apply the
Eq. (5.24). Since fi5, 1(z) = fi5,2(z) = 0 in E, we conclude from (5.24) that

where lim 15 ~ 0 R v ( b) = O. Inserting in (5.36) the inequalities

and

we obtain, since b > 0 can be chosen arbitrarily small:

lim Zn(J(e)) = P-tt+P-fi. I
n~ 00 n 2n

(5.36)

Proof of Corollary 3.1. Let J be a subarc in the interior of the free one­
sided boundary arc J1> with J 1 represented as in (5.25). We fix again b > 0
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such that (5.26) holds. Then there exists eo > 0 such that ljJ( t) can be exten­
ded to a conformal mapping on the set

{t= pei
"': p~ I-eo, (1, - J~qJ~f3+ 3}.

Let 0 < e~ eo and define

Then there exists el >0 such that Jb(e)cKuB and

for all 0 < e~ el. For such e the set

is compact in B. Hence, by (3.7), we get for any O<e~el

-I' ZnC15nE1+e) l' Zn(Jb(e»1m :s; 1m .
n----.oo n -n----t>oo n

Analogously, let

Jt(e):= {ljJ(t): t=pei
"', l-e~p~1+e, iY.+[y~qJ~f3-3}.

Then there exists a real number e2, 0 < e2 ~ e1 , such that

Consequently,

-I' Zn(D) I' Zn(J!(e2»1m --:?: 1m .
n-t-CX) n -n-'Jooo n

(5.37)

(5.38)

Since 3 can be chosen arbitrary small, we conclude from (3.1) in
Theorem 3.1, Theorem 3.3, and the inequalities (5.37) and (5.38) that (3.12)
is true. I

Corollary 3,2 is obtained by using just the same arguments.
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